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Structure function of passive scalars in two-dimensional turbulence

Bruno Eckhardt and Jo¨rg Schumacher
Fachbereich Physik, Philipps-Universita¨t Marburg, D-35032 Marburg, Germany

~Received 6 November 1998; revised manuscript received 26 May 1999!

The structure function of a scalaru(x,t), passively advected in a two-dimensional turbulent flowu(x,t), is
discussed by means of the fractal dimensiondg

(1) of the passive-scalar graph. A relation betweendg
(1) , the

scaling exponentz1
(u) of the scalar structure functionD1

(u)(r ), and the structure functionD2(r ) of the under-
lying flow field is derived. Different from the three-dimensional~3D! case, the 2D structure function also
depends on an additional parameter, characteristic of the driving of the passive scalar. In the enstrophy inertial
subrange a mean-field approximation for the velocity structure function gives a scaling of the passive scalar
graph withdg

(1),2 for intermediate and large values of the Prandtl number Pr. In the energy inertial subrange
a model for the energy spectrum and thusD2(r ) gives a passive-scalar graph scaling with exponentdg

(1)

55/3. Finally, we discuss an application to recent observations of scalar dispersion in nonuniversal 2D flows.
@S1063-651X~99!16910-1#
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I. INTRODUCTION

The dynamics of a scalar fieldu(x,t) advected in a tur-
bulent velocity fieldu(x,t) is of practical relevance in man
fields of current research such as air pollution or chem
reactions in the stratosphere in connection with the oz
hole @1#. Especially for problems in atmospheric physic
models of two-dimensional turbulent flows give a good a
proximation of the dynamical processes and are freque
used @2,3#. More recently, two-dimensional turbulence h
become experimentally accessible in mercury layers@4#, thin
salt water layers@5–8#, and soap films@9–12#. Two-
dimensional turbulence is also interesting because of its
damentally different behavior compared to the thre
dimensional case. Since the enstrophy is a second invi
invariant beside the energy two cascades develop: sta
from a fixed, intermediate injection scale, energy is tra
ported to larger spatial scales in an inverse energy cas
and to smaller ones in an enstrophy cascade@13,14#.

The scaling behavior of a passive scalar in a turbul
fluid was analyzed mainly in three dimensions where th
different regimes could be identified. Depending on the R
nolds number of the underlying fluid turbulence and the ra
of the kinematic viscosity to the scalar diffusivity one disti
guishes the viscous-convective Batchelor regime@15#, the
inertial-convective regime@16,17#, and the inertial-diffusive
regime. In 2D the situation is more complicated, since
ready the velocity field shows a variety of scaling regimes
particular, the inverse cascade process gives rise to the
mation of large scale vortices that change on very slow t
scales only@18# and can dominate the dynamics of the pa
sive scalar, at least on intermediate time scales@19,20#. The
formation of coherent vortices can be suppressed by a l
scale dissipation mechanism. If this additional dissipation
present a statistically stationary homogeneous and isotr
turbulent flow field develops, that can be characterized by
structure function. We assume that a passive scalar in su
flow field also develops a statistically stationary state wh
can be characterized by its own structure function.

The approach used to analyze the structure function of
PRE 601063-651X/99/60~4!/4185~8!/$15.00
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passive scalar is geometric measure theory@21–24#. This
powerful method allows us to connect the structure funct
of the passive scalar to that of the underlying flow field a
thus to link the statistical behavior of both. The results a
scale resolved bounds on the scaling behavior. Upper bou
are easiest to derive and often give very good results,
e.g., the favorable comparison between theory and nume
simulations in@25#. The derivation of lower bounds is pos
sible @23# but much more difficult and will not be attempte
here. So assuming the reliability of the upper bounds
would like to see how the different regimes inu are reflected
in the scaling properties of the scalar field passively advec
by the flow. Some aspects of the 2D case have been
cussed previously@24#, see below. In addition, we would like
to compare the predictions to the results of experiments
Cardosoet al. @8#, where certain discrepancies to theo
were noted. As we will see the discrepancies can be
counted for if the experimentally measured structure funct
is substituted for the velocity field.

The model we consider is that of a scalar fieldu(x,t)
transported in the turbulent flow fieldu(x,t) according to

]u

]t
1~u•“ !u5k¹2u1 f u . ~1!

k denotes the diffusivity. The force densityf u models exter-
nal boundary conditions and the driving and assures a st
tically stationary fieldu(x,t). The scalaru is assumed to be
passive, i.e., it does not affect the dynamics and the stati
cal properties of the velocity field. We assume that in t
presence of a large scale dissipation mechanism a hom
neous, isotropic, and stationary turbulent state develops.
ratio of the kinematic viscosityn to the scalar diffusivityk
defines the Prandtl number Pr5n/k ~this is the nomenclature
used whenu is a temperature field; if it describes a conce
tration then the corresponding ratio is known as the Schm
number!. The scaling exponentszn

(u) of the nth order scalar
structure functions, defined as
4185 © 1999 The American Physical Society
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Dn
(u)~r !5^uu~x1r ,t !2u~x,t !un&;r zn

(u)
, ~2!

can be obtained from an analysis of the fractal dimens
dg

(d) of d-dimensional scalar field graphs;^•& denotes the
statistical ensemble average. The fundamentals of the
metric measure theory approach were laid out by Consta
and Procaccia@21–23# who derived the fractal dimensio
dg

(d) (d is the space dimension!. Closely related to the presen
investigation is the application to two-dimensional chao
surface waves@24#. The Pr dependence of the 3D passiv
scalar advection within this approach was discussed in@25#.
As in that work we will aim at a rather direct relation b
tween scaling exponents and velocity structure functions

The outline of the paper is as follows. In Sec. II the ba
concepts of the evaluation of the fractal graph dimension
summarized. The results of the mean-field approach@26# for
fully developed two-dimensional turbulence in the direct e
strophy cascade range—the scaling behavior of the sec
order velocity structure function D2(r )5^uu(x1r ,t)
2u(x,t)u2&—are recalled. In a second step we interpolate
scaling ofD2(r ) to the inverse energy cascade range, wh
no analytical result is known. We obtainD2(r ) from the
Fourier transform of an energy spectrum as is found in m
numerical simulations. In Sec. III the fractal dimension
the passive-scalar graph is derived over a broad rang
Prandtl numbers, both in the enstrophy inertial subra
~ISR! and in the energy ISR with the previous relations
the structure function. We conclude with a summary, a d
cussion of the relation to the findings in the quasi-tw
dimensional dispersion experiments by Cardosoet al. @8#,
and some remarks on open questions.

II. BASIC CONCEPTS

A. Fractal dimension of the passive-scalar graph

From now on all considerations are made for the case
two-dimensional flow field. The graph of the scalar field
then a 2D surface in 3D space. The Hausdorff dimension
this graph is obtained from the scaling behavior of the Ha
oo

in
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dorff volume H„G(Br
(2))… of the graphG(Br

(2))5$(x,u)ux
PBr

(2) , u5u(x)% over a disk of radiusr ~the 2D ballBr
(2))

@27#,

H„G~Br
(2)!…;r dg

(2)
. ~3!

In two dimensions the fractal dimensiondg
(2) is connected to

the scaling exponentz1
(u) , cf. Eq. ~2!, through the inequality

@22#

dg
(2)<32z1

(u) . ~4!

We assume equality in Eq.~4! @22,25# and use the relation
dg

(1)5dg
(2)21, where dg

(1) is the fractal dimension of the
level sets u05u(x). The relative Hausdorff volume
H„G(Br

(2))…/V(Br
(2)) is given by geometric measure theo

@28,29# as

H„G~Br
(2)!…

V~Br
(2)!

5
1

V~Br
(2)!

E
Br

(2)
A11r 2u“ ũu2d2x,

<A11
1

pEBr
(2)

u“ ũu2d2x, ~5!

where the Cauchy-Schwartz inequality andV(Br
(2))5pr 2

were used in the last line. The passive-scalar fieldu(x,t) is
measured in units ofu rms5A^u2&, thus leading to dimen-
sionlessũ5u/u rms . Equation~5! is a generalization of the
well-known volume formulaV5*Agd2y to fractal sets,
whereV is a two-dimensional curved hyper surface embe
ded in the three-dimensional Euclidean space andg the de-
terminant of the metric tensorgi j (y1,y2).

We now turn to the evaluation ofdg
(2) . The termu“ ũu2

can be replaced by means of Eq.~1! by

u“ ũu25
1

2k
@kDũ22~u•“ !ũ2#1

f uũ

ku rms
. ~6!

With this Eq.~5! becomes
H„G~Br
(2)!…

V~Br
(2)!

<A11
1

pEBr
(2) H 1

2k
@2~u•“ !ũ21kDũ2#1

f uũ

ku rms
J d2x. ~7!
erm
e
rate
s
Pr,

i-
es
We will consider the three integrals under the square r
separately and denote them byI 1 , I 2, andI 3, respectively. In
the three-dimensional case@25# the termsI 2 andI 3 vanish in
the large-Reynolds-number limit. They also satisfy the
equality I 2<3AI 3 which changes toI 2<2AI 3 in the two-
dimensional case.I 3 can be estimated as

I 35
1

pEBr
(2)

f uũ

ku rms
d2x5

r 2eu

ku rms
2

5
euev

21/3

u rms
2

Pr r̃ 2, ~8!

where the scalar dissipation rateeu5k^u“uu2&, the enstro-
phy dissipation rateev5n^u“vu2&, and stationarity are used
t

-

In the case of a three-dimensional passive scalar this t
contains a factorn1/2 and thus can be neglected. In 2D th
smallest scales are given by the enstrophy dissipation
and this factor disappears. HenceI 3 cannot be neglected; it
importance is evidently controlled by the Prandtl number
length scaler, and dimensionless prefactor

a5
euev

21/3

u rms
2

. ~9!

The termI 2 can still be neglected on account of its subdom
nant scaling inr. We introduce dimensionless length scal
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r̃ 5r /hv by means of the enstrophy dissipation lengthhv

5n1/2ev
21/6 since in 2D turbulence it is the enstrophy casca

that brings the energy to the smallest scales where visco
dominates.

It follows from Eq. ~7! for I 1 that by applying the Gaus
theorem and the Cauchy-Schwarz inequality

I 15
r

k R
]Br

(2)

ũ2~u2u0!•n

ur
dr,

<
r

k
A R

]Br
(2)

ũ4

ur
drA R

]Br
(2)

@~u2u0!•n#2

ur
dr.

~10!

The quantityur52pr is the circumference. It is possible t
addu0, the velocity at the center ofBr

(2) , due to the assume
homogeneity.

The first term on the right hand side contains the squ
root of the passive-scalar flatness. Since we are intereste
the scaling properties ofI 1, it suffices to know that the scala
flatness is a constant, independent ofr. However, there do
not seem to be numerical or experimental data for the p
sive scalar flatness in 2D. Data for the velocity field from t
experiments@6# and the numerical simulations@30# suggest
Gaussian behavior in the absence of coherent structure
the regime of the inverse cascade. More recent experim
suggest that this result also extends into the region of
direct enstrophy cascade@31#. However, since there are mod
els where a Gaussian statistics for a random velocity fi
causes non-Gaussian scalar statistics@32,33#, this informa-
tion is insufficient to infer Gaussian statistics for the pass
scalar. In the following we will work with the Gaussian fla
ness value of three for the passive scalar. It should be ke
mind that deviations from this value will most likely be sca
dependent and will give rise to modifications of the scal
exponents.

The second term is the longitudinal velocity structu
function D i(r ). Thus we find

I 1<
A3

k
rAD i~r !. ~11!

Combining Eqs.~3!, ~7!, ~8!, and ~11! we end up with an
inequality for the fractal dimensiondg

(2) of the passive-scala
graph in two dimensions,

dg
(2)22<

d

d ln r̃
lnA11

euev
21/3

u rms
2

Pr r̃ 21A3 Prr̃AD̃ i,

~12!

whereD̃ i5D i /(ev
2/3hv

2 ). This inequality, relating the scalin
exponentdg

(2) to the longitudinal structure function of th

underlying turbulent flow fieldD̃ i is the main result of this
section. For most of the discussion that follows we will a
sume equality in Eq.~12!; in the three-dimensional case th
is a very good assumption@25#.
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B. Structure functions in two-dimensional turbulence

To evaluate Eq.~12! we need information on the scalin
behavior of the second order longitudinal structure funct
D i . The longitudinal structure functionD i(r ) and transver-
sal structure functionD'(r ) make up the velocity structure
function D2(r ) and are connected by incompressibility,D'

5D i1r (dDi /dr). Eliminating the transversal part the
gives @34,35#

D i~r !5
1

r 2E0

r

rD2~r!dr. ~13!

As there are two inertial ranges with several differe
scaling regimes, there is no analytical expression for
structure function. As far as we are aware, the best that
be achieved analytically is the structure function for the e
strophy cascade as discussed by Grossmann and Me
@26#. They used a mean-field-type approach for the fully d
veloped, turbulent velocity field in the enstrophy casca
i.e., for spatial scaleshv,r ,r in . By separating small and
large scales one finds energy and enstrophy balance e
tions where terms resulting from the small scale fluctuatio
act like an effective eddy viscosity for the large scale co
ponents ofv. Analytical expressions for the second ord
vorticity structure functionD2

(v)(r ) and the second order ve
locity structure functionD2(r ) can be found using the Batch
elor interpolation technique@26,36#. In dimensionless form
they read

D̃2~ r̃ !5
D̃2

(v)~`!

4

r̃ 2

~11ar̃2!1/3
1S Re*

2
2

D̃2
(v)~`!

4
D r̃ 2,

~14!

with the parametera515/592 and the asymptotic valu
D̃2

(v)(`)5D2
(v)(`)/ev

2/3514.8. This spectrum also depend
on the energy dissipatione, which when expressed in th
length and energy scales of the enstrophy cascade bec
the dimensionless parameter Re* 5e/(ev

2/3n). The structure

functions are shown in Fig. 1. Besides the prominentr̃ 2 be-
havior that follows already by dimensional analysis o
notes an intermediate scaling withr̃ 4/3; the range over which

FIG. 1. Velocity structure functionD2(r ) in the enstrophy iner-
tial subrange for four different values of Re* .
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this scaling is observed depends on Re* ~see below!. The
corresponding longitudinal velocity structure functionD̃ i( r̃ )
is given with Eq.~13! by

D̃ i~ r̃ !5S Re*

8
2

D̃2
(v)~`!

16
D r̃ 21

3D̃2
(v)~`!

8a F ~11ar̃2!5/321

5ar̃2

2
~11ar̃2!2/321

2ar̃2 G . ~15!

For the energy ISR no such analytical expression
-

c
w

lik
e
f.
f

th
-

-
,
b

s

known. We therefore combine a model for the energy dis
bution in k space with numerical transformations to obta
the longitudinal structure function. Recent experiments
forced two-dimensional turbulence@6,12#, and a number of
direct numerical simulations@30,37–41#, field theoretical in-
vestigations@42# as well as cascade models@43# support the
existence of a Kolmogorov-like scaling for the energy sp
trum, E(k);k25/3 for (k,kf), in the energy ISR andE(k)
;k2b with b>3 for (k.kf) for the enstrophy ISR. We
therefore start with the following model spectrum for th
amplitudeŝ uuku2& of the velocity field in a Fourier represen
tation in a periodic box of sizeL52p
^uuku2&;5
k3 :

2p

L
<k<k1 ,

k22/3 : k1,k<kf ,

k2b : kf,k<kv5
1

hv
, b>2,

k2bexpF2S k2kv

kv
D 2G : kv,k.

~16!
ctral

he
e

hy

ter
Note the different scalings for̂uuku2& and the energy spec
trum E(k) due to phase space factor, i.e.,E(k);k2b21 cor-
responds tô uuku2&;k2b.

The first range approximates finite system size effe
where we have chosen a slope of 3 in correspondence
results of numerical experiments@37,41#. This is followed by
the inverse energy cascade range with a Kolmogorov-
scaling law. At the injection scalekf the enstrophy cascad
to larger values ofk starts, followed by the viscous cutof
The energy spectra withb53 for three different values o
the injection wave numberkf are shown in Fig. 2.

The relation between velocity spectrum scaling and
velocity structure functionD2(r ) assuming stationarity, ho
mogeneity, and isotropy is given by the volume average

D2~r !5
1

VEV
uu~x1r !2u~x!u2dV,

5
1

VEV
U(

k
ukexp~ ik•x!@exp~ ik•r !21#U2

dV,

52(
k

^uuku2&@12cos~k•r !#. ~17!

By averaging over all directions~due to isotropy! in k
space the cosine gives rise to the Bessel function J0(kr),

D2~r !52(
k

^uuku2&@12J0~kr !#. ~18!

The model spectrum~16! is then substituted and the sum
mation in Eq.~18! is evaluated numerically using a finite
geometrically scaling set of wave numbers. It should
ts
ith

e

e

e

mentioned here that the model does not contain a spe
range that would correspond to the intermediater̃ 4/3 scaling
of the structure function in the enstrophy ISR found in t
analytical theory. We will come back to this point in th
discussion of our results.

III. RESULTS

A. Fractal dimension in the enstrophy ISR

We first calculate the scaling behavior in the enstrop
ISR where the analytical expression~14! is available. Insert-
ing ~14! in ~12! and neglecting the termI 3 for the moment,
one notes thatdg

(2) depends on three quantities: the parame

Re* , the Prandtl number Pr, and the scaler̃ itself. The nu-

FIG. 2. Model spectrum̂uuku2& for three different values ofk̃f

indicated by the arrows (k̃f'231025,531024,1022). The wave
numbers are given in units ofkv5hv

21 . The exponentb was set
to 3.
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merical results fordg
(1)5dg

(2)21 are shown in Fig. 3 for a
Prandtl number range varying over ten orders of magnit
and Re* 57.6. The gray shaded area denotes the rang
scales wherer̃ 4/3 gives the main contribution to the structu
function. It is only in this range that we find 1,dg

(1),2. The

range is bounded byr̃ 1< r̃< r̃ 2, where r̃ 1 is the crossover
scale from the viscous subrange~VSR! and r̃ 2 is the cross-
over scale to ther̃ 2 scaling in the enstrophy ISR,

r̃ 15
1

A3
@D̃2

(v)~`!#2~Re* !23/2,

r̃ 25
1

A3
@D̃2

(v)~`!#2@Re* 2D̃2
(v)~`!/2#23/2, ~19!

whereD̃2
(v)(`)514.8 has to be taken. The larger the Re* ,

the smaller the range of ther̃ 4/3 scaling. It can be observe
only for Re* within the interval

7.4'
D̃2

(v)~`!

2
<Re* <S @D̃2

(v)~`!#4

3
D 1/3

'25. ~20!

The lower bound follows from the positivity of the structu
function by its definition@cf. second term of Eq.~14!#. The
upper bound is a result of Eq.~19! and the constraintr̃ 1

>1. For Re* approaching 7.4 followsr̃ 2 going to infinity.
The r̃ 4/3 scaling range is then extended over the whole
strophy ISR. We see in Fig. 4 that for increasing Re* the
intermediate fractal scaling of the graph is more and m
suppressed and conclude that this behavior ofdg

(1) is due to

the presence of ther̃ 4/3 scaling range. The above estimat
give r̃ 1'6.0 and r̃ 2'1400 for Re* 57.6 and r̃ 1'1.0 and
r̃ 2'1.7 for Re* 525.0, respectively. In the lower panel th
corresponding scaling exponent of the scalar structure fu
tion z1

(u)522dg
(1) is plotted. The plateau of the structu

function D1
(u) for large Prandtl number and scales below t

FIG. 3. Fractal dimensiondg
(1) for three Prandtl numbers and th

corresponding velocity structure functionD̃2( r̃ ) ~thick line! for
Re* 57.6. The gray shaded area denotes the range of scales w

the r̃ 4/3 term dominates for the parameter set. A fractaldg
(1) can be

observed in this range of scales.
e
of

-

e

c-

smallest scales in the turbulent fluid (r /hv,1) corresponds
to the Batchelor regime of chaotic scalar advection in
smooth fluid@15#.

For small values ofPr the diffusion k dominates the
passive-scalar dynamics. The scalar field is smooth,dg

(1)

51. The exponentdg
(1) grows when the second term in th

square root of Eq.~12! becomes dominant. By inserting th
power lawD̃ i5A3 9/20@D̃2

(v)(`) r̃ #4/3 for the enstrophy ISR a

r̃ 5 r̃ c one gets a crossover for

r̃ c5
1A0 8000

243
Pr23/5@D̃2

(v)~`!#22/5'0.48 Pr23/5. ~21!

By putting r̃ c5 r̃ 2 and using~19! the maximum Prandtl num
ber Prs without fractaldg

(1) can be estimated as

Prs,2A5@D̃2
(v)~`!#24@Re* 2D̃2

(v)~`!/2#5/2. ~22!

With Re* 57.6 and 25.0 this gives Prs&231026 and 1021,
respectively.

For large values ofPr one observes a transition todg
(1)

52 even when the velocity field is in the VSR. Again th
second term of Eq.~12! dominates because of its large pre
actor Pr. TakingD̃ i5(Re* /8)r̃ 2 for the VSR gives

r̃ c5A4 8

3
Pr21/2~Re* !21/4. ~23!

With r̃ c5(1/10)r̃ 1 we get those Prl which givedg
(1)52 in the

VSR over at least one decade of scales,

Prl.200A6@D̃2
(v)~`!#24~Re* !5/2. ~24!

ere

FIG. 4. Fractal dimensiondg
(1) and scaling exponentz1

(u) as a
function of Pr510l and of Re* . The solid line is Re* 57.4 ~the
lower bound!, the dotted line is Re* 57.6, and the dashed line i
Re* 513.0 in both panels. Note thatz1

(u)522dg
(1) .
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For Re* 57.6 and 25.0 this results in Prl*2.0 and 30.0, re-
spectively.

The structure function of a passive scalar in the enstro
ISR shows four different regimes. For very smallr̃ smooth-
ness givesdg

(1)51. This is followed by the Batchelor regim

dg
(1)52 for sufficiently large Pr. Ther̃ 4/3 scaling discovered

by Grossmann and Mertens is reflected in a decrease ofdg
(1)

below 2 nearr /hv'10161. For largerr̃ it goes back up to 2.
So far we neglected the termI 35a Pr r̃ 2 @see Eqs.~8! and

~9!# in our calculation. Because of itsr̃ 2 scaling it dominates
the structure function for larger̃ . In @24# this term was as-
sumed to be subdominant. Substituting the various de
tions it can be expressed as a ratio of two rates,

a5
k^u“uu2&

~n^u“vu2&!1/3^u2&
5

r u

r v
. ~25!

The rater u5eu /u rms
2 is a scalar forcing rate.r v5ev

1/3 is the
strain rate in the enstrophy cascade and characteristic o
passive-scalar advection by the vortices. The casea.1 then
corresponds tor u.r v , i.e., fast driving and slow advection
Then the scalar field fills space anddg

(1);2. In the other case
a,1, the advection dominates and the structure function
the fluid is reflected in that of the scalar. It is this latter ca
that was discussed in@24# for surface waves. The size ofa is
determined by the experimental situation and has to be ta
from measurements. All quantities that enter Eq.~25! are
experimentally accessible; note that the enstrophy dissipa
rate is related to velocity gradients viaev528^(]xux)

3&
@26#.

Results for different Pr witha51 are shown in Fig. 5.
The main effect of an increasingI 3 is the suppression of th
crossover scaling and a transition for larger.

B. Extension to the energy ISR

The extension ofD2(r ) to the whole range of scales
done with Eq.~18! and the results fordg

(1) are given in Fig. 6
for three input model spectra~see Fig. 2! which differ by the
injection wave numberkf . The smaller thekf the longer is

FIG. 5. Fractal dimensiondg
(1) as a function of Pr510l for

Re* 57.6, a51. The solid line plots show the results when on
the advection termI 1 is taken. The dotted lines show the addition
influence of the forcing termI 3.
y
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he
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on

the enstrophy ISR extended which results in a domin
range wheredg

(1)52. On the other hand, the larger thekf the
more dominant the inverse energy cascade range, indic
as the gray shaded area in Fig. 6. The corresponding lo
tudinal velocity structure functionD i(r ) is superimposed.
Note that the model spectrum has to be normalized to g
D̃ i5(Re* /8)r̃ 2 in the VSR. In the enstrophy ISR we fin
D̃ i(r ); r̃ 2 and in the energy ISRD̃ i(r ); r̃ 2/3, leading to

dg
(1)52 and dg

(1)55/3, respectively. As mentioned, th

model spectrum does not show ther̃ 4/3 scaling predicted by
@26#. Therefore, if Re* is in the range where ar̃ 4/3 scaling
appears thedg

(1) values forr .hv have to be replaced by th
ones in Figs. 3, 4, and 5. For very large values ofr we can
replace J0(kr) by its asymptotic form J0(kr)
'A2/pkr cos@kr2(p/4)# resulting inD2(r )'2 (k ^uuku2& in
Eq. ~18!. The constant asymptotic behavior of the structu
function corresponds withdg

(1)53/2 @cf. Eq. ~12!#.
The model spectrum contains a free parameterb which

has no agreed upon value. Numerical simulations@38–41#
suggest a rangebP@2,4#. For b52 we get dg

(1) slightly
below 2 in the enstrophy ISR which changes clearly todg

(1)

52 for b.2 ~cf. Fig. 7!. As expected, the value ofdg
(1) in

the energy ISR is insensitive to ab variation.
Again we have to discuss the additional influence of

I 3 term in Eq.~7!. Will inverse cascade effects be suppress
in the large Pr number case because of the dominance o
r̃ 2 scaling at large separations? In order to determine

FIG. 6. Longitudinal velocity structure functionD̃ i( r̃ ) ~thick

line! and fractal dimensiondg
(1) over r̃ for Re* 57.6 and Pr

5104,102,100,1022, and 1024 decreasing from left to right. The
gray shaded range of scales denotes the inverse energy ca

range of ^uuku2&. ~a!, k̃f'231025; ~b!, k̃f'531024; ~c!, k̃f

'1022. The exponentb53 was taken.
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scaler̃ c whereI 3>I 1, we use the experimental value for th
Kolmogorov constantCK @6# and assume a completely e
tended inverse cascade with no intermittency correctio
Then D2(r )54CKe2/3*0

`@12J0(kr)#k25/3dk and D̃2

5b2r̃ 2/3. With CK between 5.5 and 7, we findb2 between
31.5 and 40 for the energy ISR and thus finally

r̃ a>S 9b2

8a2D 3/4

' la23/2, ~26!

where l lies between 14 and 17. The scaler̃ a is shifted to-
wards larger values for decreasinga. A factor a;1 can
suppress the scaling behavior in the energy ISR which
found above completely. This fact is illustrated in Fig.
Clearly the asymptotic state forr̃ to infinity leads here todg

(1)

approaching 2.

IV. DISCUSSION

Our main findings for a passive scalar in a 2D turbule
flow field can be summarized as follows:~1! There is a criti-
cal scale set by Eq.~21! below which the spectrum is
smooth,dg

(1)51, because of diffusion dominance.~2! Be-

FIG. 7. Fractal dimensiondg
(1) for Pr5104 and Re* 57.6 for

different values of the scaling exponentb taken in the enstrophy
ISR for the model spectrum̂uuku2& @cf. Eq. ~16!#.

FIG. 8. Fractal dimensiondg
(1) for Re* 57.6 and for three dif-

ferent values of the parametera5euev
21/3/u rms

2 . The exponentb
53 was taken.
s.

s
.

t

tween this scale and the injection scaler in the scaling expo-
nent dg

(1)52 in most cases.~3! An exception is found for
Re* in the interval set by Eq.~20!, where a scaling exponen
dg

(1),2 is found. The limits of this interval are given by Eq
~19! and the deviation from 2 is controlled by the parame
a, Eq. ~25!. ~4! Beyond the injection length and up to
length set by Eq.~26!, the scalar field scales with the expo
nent dg

(1)55/3 as expected for the energy inertial subran
~5! Above the length scale set by Eq.~26!, the exponent
again increases to 2. What is most surprising is that the s
ing derived within geometric measure theory depends
only on the scaling of the velocity field but also on tw
additional dimensionless numbers, the Reynolds num
Re* which causes the intermediate scaling in the enstro
viscous subrange and ona which suppresses the velocit
field induced scaling at large separations for rapid driving

At this point input from experiments on two-dimension
turbulence is necessary to check and expand the theore
results. Cardosoet al. @8# measured dispersion in a quas
two-dimensional turbulent flow and compared with resu
for the energy inertial subrange. They observed a velo
structure function with scalingr̃ 0 and a fractal dimension
dg

(1) between 1.3 and 1.5 with an average of about 1.4. S

stituting a velocity scaling functionD̃ i5Cr̃0 in our main
equation~12! gives

dg
(1)<11

d

d ln r̃
lnA115000~a r̃ 21A3Cr̃ !. ~27!

If the quadratic term can be neglected, i.e., ifr̃ is small
enough, the inequality readsdg

(1)<3/2. The experimental re
sults are indeed below but close to this limit, so that t
assumption that the distances are small is probably rea
able. For larger separation there is a crossover todg

(1)<2,
and it would be interesting to see whether the experime
data follow this behavior. For the energy inertial subran
@and not too large separations, see Eq.~26!#, the inequality
would bedg

(1)<5/3, higher than the one for the experime
tally observed spectrum.

Further experiments or numerical studies to check the
sults from geometric measure theory, especially the ones
the enstrophy cascade and for the dependence ona, are
clearly needed. Perhaps it is possible to combine the exp
ments on passive-scalar mixing@8,7# with the setup for ex-
tended, stationary inverse and direct cascades@6,31# in order
to measure the scaling behavior mentioned in Eq.~2!. In
order to check the predictions for the enstrophy cascad
Eq. ~1! the spatial resolution has to be enlarged. Otherw
e.g., the existence of the intermediater̃ 4/3 scaling ofD̃2( r̃ )
cannot be detected. We remind the reader that this rang
only well established for values of Re* close to its lower
threshold~see Fig. 1!. Its localization with respect tor̃ pre-
vents it from being seen in the Fourier spectrum, as alre
discussed by Grossmann and Mertens@26#.

Another open question which calls for more input fro
numerical simulations and experiments is that of the sc
flatness in 2D. For a non-Gaussian scalar statistics we wo
expect a scale-dependent flatnessFu( r̃ ) causing a further
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scale dependence of the third term in Eq.~12! and thus lead-
ing to a modification of the present model.

The problem studied here has also interesting links
magnetohydrodynamics. First steps towards using geom
measure theory in this context were undertaken by Gra
ys

ng

,

z

t.

,

Re
o
ric
er

and Marliani@44#. In two dimensions there is a direct rela
tion between magnetic field advection and the scalar dyn
ics studied here since the vector potential for the magn
field has only az component. Consequences of this relati
are under investigation.
de

-

ul-

rg,
@1# S. Edouard, B. Legras, F. Leve`vre, and R. Eymard, Nature
~London! 384, 444 ~1996!.

@2# D.K. Lilly, J. Atmos. Sci.46, 2026~1989!.
@3# M. Lesieur,Turbulence in Fluids~Martinus Nijhoff Publishers,

Dordrecht, 1987!.
@4# J. Sommeria, J. Fluid Mech.170, 139 ~1986!.
@5# P. Tabeling, S. Burkhart, O. Cardoso, and H. Willaime, Ph

Rev. Lett.67, 3772~1991!.
@6# J. Paret and P. Tabeling, Phys. Rev. Lett.79, 4162~1997!.
@7# B.S. Williams, D. Marteau, and J.P. Gollub, Phys. Fluids9,

2061 ~1997!.
@8# O. Cardoso, B. Gluckmann, O. Parcollet, and P. Tabeli

Phys. Fluids8, 209 ~1996!.
@9# M. Gharib and P. Derango, Physica D37, 406 ~1989!.

@10# B.K. Martin, X.L. Wu, W.I. Goldburg, and M.A. Rutgers
Phys. Rev. Lett.80, 3964~1998!.

@11# M. Rivera, P. Vorobieff, and R.E. Ecke, Phys. Rev. Lett.81,
1417 ~1998!.

@12# M.A. Rutgers, Phys. Rev. Lett.81, 2244~1998!.
@13# R.H. Kraichnan, Phys. Fluids10, 1417~1967!.
@14# G.K. Batchelor, Phys. Fluids Suppl.2, 233 ~1969!.
@15# G.K. Batchelor, J. Fluid Mech.5, 113 ~1959!.
@16# A.M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofi

13, 58 ~1949!.
@17# S. Corrsin, J. Appl. Phys.22, 469 ~1951!.
@18# R. Benzi, S. Patarnello, and P. Santangelo, Europhys. Let3,

811 ~1987!.
@19# A. Babiano, C. Basdevant, B. Legras, and R. Sadourny

Fluid Mech.183, 379 ~1987!.
@20# C. Basdevant and T. Philipovitch, Physica D37, 17 ~1994!.
@21# P. Constantin, I. Procaccia, and K.R. Sreenivasan, Phys.

Lett. 67, 1739~1991!.
.

,

.

J.

v.

@22# P. Constantin and I. Procaccia, Phys. Rev. E47, 3307~1993!.
@23# P. Constantin and I. Procaccia, Nonlinearity7, 1045~1994!.
@24# I. Procaccia and P. Constantin, Europhys. Lett.22, 689~1993!.
@25# S. Grossmann and D. Lohse, Europhys. Lett.27, 347 ~1994!.
@26# S. Grossmann and P. Mertens, Z. Phys. B88, 105 ~1992!.
@27# K. J. Falconer,The Geometry of Fractal Sets~Cambridge Uni-

versity Press, Cambridge, 1985!.
@28# H. Federer,Geometric Measure Theory~Springer, Berlin,

1969!.
@29# F. Morgan,Geometric Measure Theory, a Beginners Gui

~Academic Press, Boston, 1988!.
@30# L.M. Smith and V. Yakhot, Phys. Rev. Lett.71, 352 ~1993!.
@31# J. Paret, M.-C. Jullien, and P. Tabeling~unpublished!.
@32# B.I. Shraiman and E.D. Siggia, Phys. Rev. E49, 2912~1994!.
@33# R.H. Kraichnan, Phys. Rev. Lett.72, 1016~1994!.
@34# A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics

~MIT Press, Cambridge, MA, 1975!.
@35# L. D. Landau and E. M. Lifschitz,Course of Theoretical Phys

ics ~Pergamon Press, Oxford, 1987!, Vol. 6.
@36# G.K. Batchelor, Proc. Cambridge Philos. Soc.47, 359 ~1951!.
@37# U. Frisch and P.L. Sulem, Phys. Fluids27, 1921~1984!.
@38# R. Benzi, C. Paladin, S. Patarnello, P. Santangelo, and A. V

piani, J. Phys. A19, 3771~1986!.
@39# V. Borue, Phys. Rev. Lett.71, 3967~1993!.
@40# N.K.-R. Kevlahan and M. Farge, J. Fluid Mech.346, 49

~1997!.
@41# A. Babiano, B. Dubrulle, and P. Frick, Phys. Rev. E55, 2693

~1997!.
@42# G. Falkovich and V. Lebedev, Phys. Rev. E49, R1800~1994!.
@43# J. Schumacher, Diploma thesis, Philipps University Marbu

1994 ~unpublished!.
@44# R. Grauer and C. Marliani, Phys. Plasmas2, 41 ~1995!.


