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The structure function of a scal@x,t), passively advected in a two-dimensional turbulent fle,t), is
discussed by means of the fractal dimensif? of the passive-scalar graph. A relation betwe®h, the
scaling exponent!” of the scalar structure functiod{”(r), and the structure functioB,(r) of the under-
lying flow field is derived. Different from the three-dimension&D) case, the 2D structure function also
depends on an additional parameter, characteristic of the driving of the passive scalar. In the enstrophy inertial
subrange a mean-field approximation for the velocity structure function gives a scaling of the passive scalar
graph with5g1)<2 for intermediate and large values of the Prandtl number Pr. In the energy inertial subrange
a model for the energy spectrum and tHDg(r) gives a passive-scalar graph scaling with exponiéﬁt
=5/3. Finally, we discuss an application to recent observations of scalar dispersion in nonuniversal 2D flows.
[S1063-651%99)16910-1
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I. INTRODUCTION passive scalar is geometric measure theg@¥y—24. This
powerful method allows us to connect the structure function
The dynamics of a scalar fielé(x,t) advected in a tur- of the passive scalar to that of the underlying flow field and
bulent velocity fieldu(x,t) is of practical relevance in many thus to link the statistical behavior of both. The results are
fields of current research such as air pollution or chemicafcale resolved bounds on the scaling behavior. Upper bounds
reactions in the stratosphere in connection with the ozondre easiest to derive and often give very good results, see,
hole [1]. Especially for problems in atmospheric physics, €-9., the favorable comparison between theory and numerical
models of two-dimensional turbulent flows give a good ap-Simulations in[25]. The derivation of lower bounds is pos-
proximation of the dynamical processes and are frequentigible[23] but much more difficult and will not be attempted
used[2,3]. More recently, two-dimensional turbulence hashere. So assuming the reliability of the upper bounds we
become experimentally accessible in mercury laydtsthin ~ would like to see how the different regimesturare reflected
salt water layers[5—8], and soap films[9-12. Two- inthe scaling properties of the scalar field passively advected
dimensional turbulence is also interesting because of its furRy the flow. Some aspects of the 2D case have been dis-
damentally different behavior compared to the three-cussed previouslj24], see below. In addition, we would like
dimensional case. Since the enstrophy is a second invisci@® compare the predictions to the results of experiments of
invariant beside the energy two cascades develop: startifgardosoet al. [8], where certain discrepancies to theory
from a fixed, intermediate injection scale, energy is transwere noted. As we will see the discrepancies can be ac-
ported to larger spatial scales in an inverse energy cascag@unted for if the experimentally measured structure function
and to smaller ones in an enstrophy casdd®e14. is substituted for the velocity field.
The scaling behavior of a passive scalar in a turbulent The model we consider is that of a scalar fied(k,t)
fluid was analyzed mainly in three dimensions where thredransported in the turbulent flow fiela(x,t) according to
different regimes could be identified. Depending on the Rey-
nolds number of the underlying fluid turbulence and the ratio 20
of the kinematic viscosity to the scalar diffusivity one distin- 77 ) _ . v2
guishes the viscous-convective Batchelor regirhB], the at F(U-V)6=KVO+T,. @
inertial-convective regimgl6,17, and the inertial-diffusive
regime. In 2D the situation is more complicated, since al-
ready the velocity field shows a variety of scaling regimes. In« denotes the diffusivity. The force density models exter-
particular, the inverse cascade process gives rise to the foRal boundary conditions and the driving and assures a statis-
mation of large scale vortices that change on very slow timdically stationary fieldd(x,t). The scalar is assumed to be
scales only{18] and can dominate the dynamics of the pas-passivei.e., it does not affect the dynamics and the statisti-
sive scalar, at least on intermediate time scfl€s20. The  cal properties of the velocity field. We assume that in the
formation of coherent vortices can be suppressed by a largeresence of a large scale dissipation mechanism a homoge-
scale dissipation mechanism. If this additional dissipation ig1€ous, isotropic, and stationary turbulent state develops. The
present a statistically stationary homogeneous and isotropi@tio of the kinematic viscosity to the scalar diffusivityx
turbulent flow field develops, that can be characterized by itslefines the Prandtl number-Pp/ « (this is the nomenclature
structure function. We assume that a passive scalar in suchused wherv is a temperature field; if it describes a concen-
flow field also develops a statistically stationary state whichration then the corresponding ratio is known as the Schmidt
can be characterized by its own structure function. numbej. The scaling exponent@;ﬁa) of the nth order scalar
The approach used to analyze the structure function of thetructure functions, defined as
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DO(r)=(| 6(x+r,t)— O(x,1)| ) ~ré, (2)  dorff volume H(G(B®)) of the graphG(B{”)={(x,6)|x
eB®, 9=6(x)} over a disk of radius (the 2D ballB{?)
can be obtained from an analysis of the fractal dimensiof27],
s of d-dimensional scalar field graphé;) denotes the o
statistical ensemble average. The fundamentals of the geo- H(G(Bﬁz)))~r‘sg . 3
metric measure theory approach were laid out by Constantin
and Procaccile_za who derived the fractal dimension In two dimensions the fractal dimensi@éz) is connected to
s\ (d is the space dimensiarClosely related to the present the scaling exponent,” , cf. Eq.(2), through the inequality
investigation is the application to two-dimensional chaotic[22]
surface wave$24]. The Pr dependence of the 3D passive-
scalar advection within this approach was discussd@%h
As in that work we will aim at a rather direct relation be- we assume equality in Eg4) [22,25 and use the relation
tween scall_ng exponents ar_1d velocity structure func'uons._ 5&1): 5&2)_1, where 5(g1) is the fractal dimension of the
The outline of the paper is as follows. In Sec. Il the basicq e sets 0o=6(x). The relative Hausdorff volume

concepts of the evaluation of the fractal graph dimension ar (2) 2N e .
summarized. The results of the mean-field apprd26éh for E%Gz(qB’as))N(Br ) is given by geometric measure theory

fully developed two-dimensional turbulence in the direct en-

sP<3-¢1". (4

strophy cascade range—the scaling behavior of the second H(G(B® 1
order velocity structure function Dy(r)=(|u(x+r,t) (G(B:) = V1+r2|V6|2d%x,
2 . V(B(Z)) V(B(z)) g2
—u(x,t)|*)—are recalled. In a second step we interpolate the r r r
scaling ofD,(r) to the inverse energy cascade range, where 1
no analytical result is known. We obtaid,(r) from the = \/1+_f V8| 2d2x, (5)
Fourier transform of an energy spectrum as is found in many ()

numerical simulations. In Sec. Ill the fractal dimension of ) ) @) )

the passive-scalar graph is derived over a broad range dfhere the Cauchy-Schwartz inequality aR@B;™)=r
Prandtl numbers, both in the enstrophy inertial subrangdvere used in the last line. The passive-scalar filt) is
(ISR) and in the energy ISR with the previous relations formeasured in units of,s=(#), thus leading to dimen-
the structure function. We conclude with a summary, a dissionlessé= 6/6,,s. Equation(5) is a generalization of the
cussion of the relation to the findings in the quasi-two-well-known volume formulaV=[+gd?y to fractal sets,
dimensional dispersion experiments by Cardes@l. [8],  whereV is a two-dimensional curved hyper surface embed-

and some remarks on open questions. ded in the three-dimensional Euclidean space gutide de-
terminant of the metric tensay;; (y*,y?).
Il. BASIC CONCEPTS We now turn to the evaluation of{”). The term|V'g|?
A. Fractal dimension of the passive-scalar graph can be replaced by means of Ka) by

From now on all considerations are made for the case of a ~ 1 ~ - f,0
two-dimensional flow field. The graph of the scalar field is |V¢9|2:§[KA 6°—(u-V) 6]+ P (6)
then a 2D surface in 3D space. The Hausdorff dimension of rms
this graph is obtained from the scaling behavior of the HausWith this Eq.(5) becomes

H(G(B®)) \/ 1 1 A
\/(B—I(’z))$ 1+;f352) Z[_(UV)H +KkA6 ]+K9rms d=x. (7)

We will consider the three integrals under the square rootn the case of a three-dimensional passive scalar this term
separately and denote them hy |,, andl 5, respectively. In  contains a factow'”? and thus can be neglected. In 2D the
the three-dimensional caf25] the termd, andl; vanish in  smallest scales are given by the enstrophy dissipation rate
the large-Reynolds-number limit. They also satisfy the in-and this factor disappears. Hengecannot be neglected; its
equality 1 ,<34/15 which changes td,<2./l5 in the two-  importance is evidently controlled by the Prandtl number Pr,

dimensional casds can be estimated as length scale, and dimensionless prefactor
~ -13 -13
1 fqe0 r’e, €€ v €€
la=—| g d’x=——=—2—Prr?, (8 a=— (9)
7B K Urms KOs Orms rms

where the scalar dissipation raég=«(|V 6|?), the enstro- The terml, can still be neglected on account of its subdomi-
phy dissipation rate, = (| V w|?), and stationarity are used. nant scaling inr. We introduce dimensionless length scales
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7=r/77w by means of the enstrophy dissipation length
=2 Y8 since in 2D turbulence it is the enstrophy cascade
that brings the energy to the smallest scales where viscosity
dominates.

It follows from Eq.(7) for |, that by applying the Gauss

theorem and the Cauchy-Schwarz inequality

r 8%(u—ugp) - n
ll:_ Z—dr,
K &Bg) ur

r /fﬁ ~04d \/fﬁ [(U—Uo)'n]zd
< —dr -~ dr.
P BAU[ B U, logio(r/m.,)

(10

7)

10g1o(D2/772€

FIG. 1. Velocity structure functio®,(r) in the enstrophy iner-

. . . . . tial subrange for four different values of Re
The quantityu, =27 is the circumference. It is possible to

adduy, the velocity at the center &, due to the assumed B. Structure functions in two-dimensional turbulence

homogeneity. . . .
The first term on the right hand side contains the square 10 €valuate Eq(12) we need information on the scaling

root of the passive-scalar flatness. Since we are interested Rfhavior of the second order longitudinal structure function
the scaling properties of,, it suffices to know that the scalar P+ The longitudinal structure functiod(r) and transver-
flatness is a constant, independentroHowever, there do Sal structure functiod, (r) make up the velocity structure
not seem to be numerical or experimental data for the padinction Dp(r) and are connected by incompressibiliy,
sive scalar flatness in 2D. Data for the velocity field from the=Dj+r(dDy/dr). Eliminating the transversal part then
experimentg6] and the numerical simulatiof80] suggest  gives[34,35
Gaussian behavior in the absence of coherent structures in
the regime of the inverse cascade. More recent experiments _
suggest that this result also extends into the region of the Dy(r)= 2 OPDZ(p)dp'
direct enstrophy cascafi@l]. However, since there are mod-
els where a Gaussian statistics for a random velocity field ag there are two inertial ranges with several different
causes non-Gaussian scalar statis®,33, this informa-  gcajing regimes, there is no analytical expression for the
tion is insufficient to infer Gaussian statistics for the passivesy,cture function. As far as we are aware, the best that can
scalar. In the following we will work with the Gaussian flat- e achieved analytically is the structure function for the en-
ness value of three for the passive scalar. It should be kept Brophy cascade as discussed by Grossmann and Mertens
mind that deviations from this value will most likely be scale 26]. They used a mean-field-type approach for the fully de-
dependent and will give rise to modifications of the Sca”ngveloped, turbulent velocity field in the enstrophy cascade,
exponents. _ o _ i.e., for spatial scales),<r<r,,. By separating small and
The second term is 'Fhe longitudinal velocity structure|arge scales one finds energy and enstrophy balance equa-
function Dy(r). Thus we find tions where terms resulting from the small scale fluctuations
act like an effective eddy viscosity for the large scale com-
\/§ ponents ofw. Analytical expressions for the second order
ly<——rVDy(r). (D vorticity structure functiorD$”)(r) and the second order ve-
locity structure functiorD,(r) can be found using the Batch-
elor interpolation techniqug?6,36. In dimensionless form

r

(13

Combining Egs.(3), (7), (8), and (11) we end up with an

inequality for the fractal dimensios{”) of the passive-scalar they read
graph in two dimensions, ~ - 0
5. () DY) T +(Re* D¢ (oo))~2
r)= _ =2 e
d epe, 3 ? 4 (1+ar?)'s 2 4
5(92)_2S =In 1+ 0 zw Prre+ \/§ Prr 5”, (14)
dinr

rms

(12 with the parametera=15/592 and the asymptotic value
D) (00) =D§®)(0)/e¥3=14.8. This spectrum also depends

whereD =D /(€2?52). This inequality, relating the scaling On the energy dissipatios, which when expressed in the
exponentsy” to the longitudinal structure function of the length and energy scales of the enstrophy cascade becomes
underlying turbulent flow field is the main result of this the dimensionless pallrarr?eter*l%ee/.(e v). The structure
section. For most of the discussion that follows we will as-functions are shown in Fig. 1. Besides the prominenbe-
sume equality in Eq(12); in the three-dimensional case this havior that follows already by dimensional analysis one
is a very good assumptidr25]. notes an intermediate scaling with®; the range over which

w
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this scaling is observed depends on*Reee below. The

corresponding longitudinal velocity structure functiﬁrw(?)
is given with Eq.(13) by

5 = _[Re E)gw>(oc)>~2+ 3D () [ (1+ar?)®3-1
=15 ~""16 | 8a Sar2
(1+ar?)?-1
-—— (15

2ar?

JORG SCHUMACHER PRE 60

known. We therefore combine a model for the energy distri-
bution in k space with numerical transformations to obtain
the longitudinal structure function. Recent experiments on
forced two-dimensional turbulend€,12], and a number of
direct numerical simulationg30,37-41, field theoretical in-
vestigationg42] as well as cascade mod¢#3] support the
existence of a Kolmogorov-like scaling for the energy spec-
trum, E(k)~k ™52 for (k<k;), in the energy ISR ané(k)
~k~# with =3 for (k>k¢) for the enstrophy ISR. We
therefore start with the following model spectrum for the
amplitudes(|u,|?) of the velocity field in a Fourier represen-

For the energy ISR no such analytical expression idation in a periodic box of size =2

(Ju )~

Note the different scalings faffu,|?) and the energy spec-
trum E(k) due to phase space factor, iE(k)~k 4~ cor-
responds td|uy|?)~k 2.

(16)

mentioned here that the model does not contain a spectral

range that would correspond to the intermedidf2 scaling
of the structure function in the enstrophy ISR found in the

The first range approximates finite system size effect@nalytical theory. We will come back to this point in the
where we have chosen a slope of 3 in correspondence withiscussion of our results.

results of numerical experimerit37,41. This is followed by

the inverse energy cascade range with a Kolmogorov-like

scaling law. At the injection scalk; the enstrophy cascade
to larger values ok starts, followed by the viscous cutoff.
The energy spectra witg=3 for three different values of
the injection wave numbel; are shown in Fig. 2.

Ill. RESULTS
A. Fractal dimension in the enstrophy ISR

We first calculate the scaling behavior in the enstrophy
ISR where the analytical expressi@h) is available. Insert-

The relation between velocity spectrum scaling and theng (14) in (12) and neglecting the terry for the moment,

velocity structure functiorD,(r) assuming stationarity, ho-
mogeneity, and isotropy is given by the volume average

1
D)=y | Jutxsn—ucoPav,

2

= %fv ; UkeXF(ik-X)[quik. r)_ 1] dv,

=2§ (Jud®[1—cogk-)]. 17

By averaging over all direction&ue to isotropy in k
space the cosine gives rise to the Bessel functighry,

Dz(r>=2; (Jug?[ 1= (k). (18)

The model spectrur(iL6) is then substituted and the sum-
mation in Eq.(18) is evaluated numerically using a finite,

one notes thaﬁgz) depends on three quantities: the parameter
Re*, the Prandtl number Pr, and the scaléself. The nu-

logo(<|uyl*>)

—4
logo(k/k,)

-2

FIG. 2. Model spectrung|u,|?) for three different values d;
indicated by the arrowsk¢~2x10°5x1074 10 2). The wave
numbers are given in units &f,= 77;1. The exponenj3 was set

geometrically scaling set of wave numbers. It should beo 3.
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FIG. 3. Fractal dimensioa{" for three Prandtl numbers and the
corresponding velocity structure functidd,(r) (thick line) for
Re* =7.6. The gray shaded area denotes the range of scales where
theT*? term dominates for the parameter set. A fradgh can be
observed in this range of scales. 0.0

-4 -2 0 2 4
Prandtl number range varying over ten orders of magnitude log;o(r/7.)
and R&=7.6. The gray shaded area denotes the range of £, 4 Fractal d|men3|or£(1) and scaling exponent

merical results f0r551)= 552)—1 are shown in Fig. 3 for a

() as a
1

scales where” gives the main contribution to the structure function of P=10" and of Ré The solid line is R&=7.4 (the
function. It is only in this range that we f|nd<15(1)<2 The lower bound, the dotted line is Re=7.6, and the dashed line is

~ ~ o~ ~ _ H 0) _ 1
range is bounded by,<r<r,, whereT, is the crossover Re€ =13.0 in both panels. Note tha{”=2—5{".
scale from the viscous subran@é¢SR) and', is the cross-
over scale to the? scaling in the enstrophy ISR,

=43

smallest scales in the turbulent fluid/ ¢, <1) corresponds
to the Batchelor regime of chaotic scalar advection in
smooth fluid[15].

:i[’D(“’)(m)f(Re*)—?*/Z For small values ofPr the diffusionx dominates the

V3 2 ' passive-scalar dynamics. The scalar field is smoéﬂﬁ)
=1. The exponens|" grows when the second term in the

1 B square root of Eq(12) becomes dominant. By inserting the
r2=ﬁ[D(2“’)(00)]2[Re*—D(Z‘”)(OO)IZ]_3/2, (19 power lawD | =3/9/2q D$”) (=) ]** for the enstrophy ISR at
T=T, one gets a crossover for

Whereﬁ(z‘“)(oo)=14.8 has to be taken. The larger the*Re

~ ; Te= 1\0/—8000Pr‘3’5[5(‘“) ©)]"#~0.48 Pris. (21
the smaller the range of thé”® scaling. It can be observed ¢ V 243 2" ' '
only for Re" within the interval

By puttingr =T, and using(19) the maximum Prandtl num-
ber Pg without fractal 8{" can be estimated as

7.4~

D@ IQITSY
D22( )gRe*g([Dzé )]

13

) ~25. (20

Pr,<2\5[D{(=)] [Re —D{(=)/2]%2 (22

The lower bound follows from the positivity of the structure
function by its definition[cf. second term of Eq14)]. The :

respectively.

upper bound is a result of Eq19) and the constraint For large values ofPr one observes a transition &§")
=1. For Re approaching 7.4 follows going to infinity. =2 even when the velocity field is in the VSR. Again the
Ther*? scaling range is then extended over the whole ensecond term of Eq(12) dominates because of its large pref-

strophy ISR. We see in Fig. 4 that for increasing"Rbe  actor Pr. Takng”—(Re*/S)r for the VSR gives
intermediate fractal scaling of the graph is more and more

suppressed and conclude that this behawoﬁgb)f is due to - 4/8
~4/3 . . r Pr 1/2( Ré\‘) 1/4
the presence of the™* scaling range. The above estimates ¢

g|ve r,~6.0 andr,~1400 for R& =7.6 andr;~1.0 and

T,~1.7 for Reé =25.0, respectively. In the lower panel the WithT;=(1/10)r; we get those Pwhich give 5" =2 in the
corresponding scaling exponent of the scalar structure func/SR over at least one decade of scales,

tion {{¥=2—-6{" is plotted. The plateau of the structure o1 o

function D{? for large Prandtl number and scales below the Pr>2006[ D5 ()] *4(Re* )2, (24)

With Re* =7.6 and 25.0 this gives PE2X 10 ® and 101,

(23
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18%s
1.0 1.66 1 2
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«© g A
-4 -2 0 2 4 1.33 1078
log,,(r &
g10(r/M.) 1.00 S
FIG. 5. Fractal dimensions{" as a function of P10 for 200 12
Re*=7.6, a=1. The solid line plots show the results when only g
the advection ternh, is taken. The dotted lines show the additional 166 . 8 :w:
influence of the forcing ternhs. Sw 14 S
. 1 a
For Re&" =7.6 and 25.0 this results in |Rr2.0 and 30.0, re- 1.33 10 2
spectively. 1.00 4 Eﬂ
The structure function of a passive scalar in the enstrophy : N
ISR shows four different regimes. For very smatmooth- % Ol & ( ;L )6 8
ness givess)=1. This is followed by the Batchelor regime 0810\I'/ Mo
581):2 for sufficiently large Pr. The*? scaling discovered FIG. 6. Longitudinal velocity structure functiob(r) (thick

by Grossmann and Mertens is refle~cted ina decrea@élbf line) and fractal dimensionagl) overT for Ret=7.6 and Pr
below 2 near/7,~10""1. For larger it goes back upto 2. =10*10%1¢,10 2, and 10* decreasing from left to right. The
So far we neglected the terrg= « Pr72 [see Eqs(8) and gray shaded range of scales denotes the inverse energy cascade
~ 2 T~ - 5. T o~ —4. T
(9)] in our calculation. Because of it€ scaling it dominates rangiaz of (|ug*). (@, k~2x10> (b), k=~5x10"% (©), k¢
) ~ . ~10"“. The exponenB=3 was taken.
the structure function for large. In [24] this term was as-
sumed to be subdominant. SUbSUtUUng the various dEfInlthe enstrophy ISR extended which results in a dominant

tions it can be expressed as a ratio of two rates, range where{" = 2. On the other hand, the larger thiethe
) more dominant the inverse energy cascade range, indicated
w= (| V 6]%) _Te (25) as the gray shaded area in Fig. 6. The corresponding longi-
(v(|V w|?)) Y3 6?) e tudinal velocity structure functiod(r) is superimposed.

Note that the model spectrum has to be normalized to give
The rater ;= €9/ 07ys is @ scalar forcing rate., = e, isthe B =(Re*/8)r? in the VSR. In the enstrophy ISR we find
stralr] rate in the enstrophy cascadg and characteristic of trﬁ”(r)wyz and in the energy ISF5H(r)~72’3, leading to
passive-scalar advection by the vortices. The easd. then 1) 1 ) )
corresponds to,>r,,, i.e., fast driving and slow advection. d)=2 and &{’=5/3, respectively. As mentioned, the
Then the scalar field fills space aa’~2. In the other case model spectrum does not show th¥® scaling predicted by
a<1, the advection dominates and the structure function of26]. Therefore, if R& is in the range where B”° scaling
the fluid is reflected in that of the scalar. It is this latter caseappears thé") values forr = ,, have to be replaced by the
that was discussed [24] for surface waves. The size afis  ones in Figs. 3, 4, and 5. For very large values efe can
determined by the experimental situation and has to be takemplace g(kr) by its asymptotic form glkr)
from measurements. All quantities that enter E2p) are  ~2/7kr cogkr—(m/4)] resulting inD(r)~2 S (u?) in
experimentally accessible; note that the enstrophy dissipatiopq. (18). The constant asymptotic behavior of the structure
rate is related to velocity gradients via,=—8((4xU,)°)  function corresponds witd("=3/2 [cf. Eq. (12)].
[26]. ) ) o The model spectrum contains a free paramgewrhich

Results for different Pr withw=1 are shown in Fig. 5. has no agreed upon value. Numerical simulatif88—41]

The main eﬁeqt of an increasi_n_g is the suppression of the suggest a rang@ e[2,4]. For =2 we get 551) slightly
crossover scaling and a transition for large below 2 in the enstrophy ISR which changes clearly§t
=2 for B>2 (cf. Fig. 7). As expected, the value oi(gl) in
the energy ISR is insensitive to/ variation.

The extension oD,(r) to the whole range of scales is  Again we have to discuss the additional influence of the
done with Eq(18) and the results fos{" are given in Fig. 6 |3 term in Eq.(7). Will inverse cascade effects be suppressed
for three input model spectiaee Fig. 2 which differ by the  in the large Pr number case because of the dominance of the
injection wave numbek;. The smaller thek; the longer is 2 scaling at large separations? In order to determine the

B. Extension to the energy ISR
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T T T T T tween this scale and the injection scajgthe scaling expo-

R nent 5él)=2 in most cases(3) An exception is found for
Re" in the interval set by Eq20), where a scaling exponent
s{N<2 is found. The limits of this interval are given by Eq.
(19) and the deviation from 2 is controlled by the parameter
a, Eq. (25). (4) Beyond the injection length and up to a
length set by Eq(26), the scalar field scales with the expo-
nent 651)25/3 as expected for the energy inertial subrange.
(5) Above the length scale set by E6), the exponent
again increases to 2. What is most surprising is that the scal-
ing derived within geometric measure theory depends not

_9 0 2 4 6 only on the scaling of the velocity field but also on two
log o(T/7,) additional dimensionless numbers, the Reynolds number
Re* which causes the intermediate scaling in the enstrophy
FIG. 7. Fractal dimensio{") for Pr=10* and R& =7.6 for  viscous subrange and am which suppresses the velocity
different values of the scaling exponefttaken in the enstrophy field induced scaling at large separations for rapid driving.
ISR for the model spectrurju,|?) [cf. Eq. (16)]. At this point input from experiments on two-dimensional
turbulence is necessary to check and expand the theoretical
scaler, wherel;=1,, we use the experimental value for the results. Cardoset al. [8] measured dispersion in a quasi-
Ko|mog0rov ConstanCK [6] and assume a Comp|ete|y ex- two-dimensional turbulent flow and Compared with results
tended inverse cascade with no intermittency correctiondOr the energy inertial subrange. They observed a velocity
Then Dy(r)=4Cxe?3Z[1—Jy(kr)]k %dk and D, strlucture function with sca!ing;0 and a fractal dimension
—b,F23 With C, between 55 and 7, we find, between s{" between 1.3 and 1.5 with an average of about 1.4. Sub-

2.00

6]
g

)

1.66}

31.5 and 40 for the energy ISR and thus finally stituting a velocity scaling functio®=Ct° in our main
equation(12) gives
3/4
~ _[9by 32
raB F ~|la y (26) d
a 5él)$1+dl — V145000 ar2+3CT).  (27)
nr

wherel lies between 14 and 17. The scalgis shifted to-

wards larger values for decreasing A factor a~1 can ) R
suppress the scaling behavior in the energy ISR which walf the quadratic term can be neglected, i.e.r ifis small
found above completely. This fact is illustrated in Fig. 8. €nough, the inequality read$"'<3/2. The experimental re-

Clearly the asymptotic state forto infinity leads here ta( sults are indeed below but close to this limit, so that the
approaching 2 9 assumption that the distances are small is probably reason-

able. For larger separation there is a crossoveﬂéfé)sz,
and it would be interesting to see whether the experimental
IV. DISCUSSION data follow this behavior. For the energy inertial subrange

Our main findings for a passive scalar in a 2D turbulent-@nd not t%)) large separations, see E2f)], the inequality
flow field can be summarized as followd) There is a criti-  Would be 65”<5/3, higher than the one for the experimen-

cal scale set by Eq(21) below which the spectrum is tally observed spectrum. _ _
smooth, 551)=1’ because of diffusion dominancé?) Be- Further experiments or numerical studies to check the re-

sults from geometric measure theory, especially the ones for
— the enstrophy cascade and for the dependencer,0are
clearly needed. Perhaps it is possible to combine the experi-
ments on passive-scalar mixifg,7] with the setup for ex-
tended, stationary inverse and direct casc@fi¢gxl] in order
to measure the scaling behavior mentioned in &j. In
order to check the predictions for the enstrophy cascade in
Eg. (1) the spatial resolution has to be enlarged. Otherwise,

e.g., the existence of the intermediaf¥’ scaling ofD,(T)
cannot be detected. We remind the reader that this range is
only well established for values of Reclose to its lower

threshold(see Fig. 1 Its localization with respect to pre-
2 0 5 4 6 8 vents it from being seen in the Fourier spectrum, as already
1 (r/n.) discussed by Grossmann and MertE2@].
©C810\1/ Mo Another open question which calls for more input from
FIG. 8. Fractal dimensios( for Re* =7.6 and for three dif- numerical simulations and experiments is that of the scalar

ferent values of the parameter=e,e, Y362 .. The exponenpg  1ainess in 2D. For a non-Gaussian scalar statistics we would

=3 was taken. expect a scale-dependent flatndsgr) causing a further

2.001,
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scale dependence of the third term in EtR) and thus lead- and Marliani[44]. In two dimensions there is a direct rela-
ing to a modification of the present model. tion between magnetic field advection and the scalar dynam-

The problem studied here has also interesting links tacs studied here since the vector potential for the magnetic
magnetohydrodynamics. First steps towards using geometriteld has only az component. Consequences of this relation
measure theory in this context were undertaken by Graueare under investigation.

[1] S. Edouard, B. Legras, F. Lewe, and R. Eymard, Nature [22] P. Constantin and |. Procaccia, Phys. Rev73307(1993.

(London 384, 444 (1996. [23] P. Constantin and I. Procaccia, Nonlinearityl045(1994).
[2] D.K. Lilly, J. Atmos. Sci.46, 2026(1989. [24] I. Procaccia and P. Constantin, Europhys. L2%.689(1993.
[3] M. Lesieur,Turbulence in Fluid¢Martinus Nijhoff Publishers, [25] S. Grossmann and D. Lohse, Europhys. L2%.347 (1994).
Dordrecht, 198Y. [26] S. Grossmann and P. Mertens, Z. Phys3&@ 105 (1992.
[4] J. Sommeria, J. Fluid Mech.70, 139(1986. [27] K. J. FalconerThe Geometry of Fractal Set€ambridge Uni-
[5] P. Tabeling, S. Burkhart, O. Cardoso, and H. Willaime, Phys. versity Press, Cambridge, 1985
Rev. Lett.67, 3772(199). [28] H. Federer, Geometric Measure TheorySpringer, Berlin,
[6] J. Paret and P. Tabeling, Phys. Rev. L&8,. 4162(1997. 1969.
[7] B.S. Williams, D. Marteau, and J.P. Gollub, Phys. Flufils [29] F. Morgan, Geometric Measure Theory, a Beginners Guide
2061(1997). (Academic Press, Boston, 1988
[8] O. Cardoso, B. Gluckmann, O. Parcollet, and P. Tabeling[30] L.M. Smith and V. Yakhot, Phys. Rev. Left1, 352(1993.
Phys. Fluids8, 209 (1996. [31] J. Paret, M.-C. Jullien, and P. Tabelifgnpublisheg
[9] M. Gharib and P. Derango, Physica37, 406 (1989. [32] B.l. Shraiman and E.D. Siggia, Phys. Rev4€ 2912(1994).
[10] B.K. Martin, X.L. Wu, W.l. Goldburg, and M.A. Rutgers, [33] R.H. Kraichnan, Phys. Rev. Leff2, 1016(1994).
Phys. Rev. Lett80, 3964 (1998. [34] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics
[11] M. Rivera, P. Vorobieff, and R.E. Ecke, Phys. Rev. Létt, (MIT Press, Cambridge, MA, 1975
1417(1998. [35] L. D. Landau and E. M. LifschitzZCourse of Theoretical Phys-
[12] M.A. Rutgers, Phys. Rev. Let81, 2244(1998. ics (Pergamon Press, Oxford, 198¥ol. 6.
[13] R.H. Kraichnan, Phys. Fluids0, 1417 (1967). [36] G.K. Batchelor, Proc. Cambridge Philos. S, 359(1951).
[14] G.K. Batchelor, Phys. Fluids Supg, 233(1969. [37] U. Frisch and P.L. Sulem, Phys. Fluidg, 1921(1984).
[15] G.K. Batchelor, J. Fluid Mectb, 113 (1959. [38] R. Benzi, C. Paladin, S. Patarnello, P. Santangelo, and A. Vul-
[16] A.M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. piani, J. Phys. Al9, 3771(1986.
13, 58(1949. [39] V. Borue, Phys. Rev. Letf71, 3967(1993.
[17] S. Corrsin, J. Appl. Phy22, 469 (1951). [40] N.K.-R. Kevlahan and M. Farge, J. Fluid MecB46 49
[18] R. Benzi, S. Patarnello, and P. Santangelo, Europhys. Rett. (1997.
811(1987. [41] A. Babiano, B. Dubrulle, and P. Frick, Phys. Revbg 2693
[19] A. Babiano, C. Basdevant, B. Legras, and R. Sadourny, J.  (1997.
Fluid Mech.183 379(1987. [42] G. Falkovich and V. Lebedev, Phys. Rev4E, R1800(1994).
[20] C. Basdevant and T. Philipovitch, Physica3®, 17 (1994). [43] J. Schumacher, Diploma thesis, Philipps University Marburg,

[21] P. Constantin, I. Procaccia, and K.R. Sreenivasan, Phys. Rev. 1994 (unpublishegl
Lett. 67, 1739(1991). [44] R. Grauer and C. Marliani, Phys. Plasnfagil (1995.



